
Semantic Reasoning with Image Annotations for Tumor Assessment 

Mia A. Levy, MD, Martin J. O’Connor, M.Sc., Daniel L. Rubin, MD, MS 
Stanford University, Stanford, CA 
Abstract 

Identifying, tracking and reasoning about tumor 
lesions is a central task in cancer research and 
clinical practice that could potentially be automated. 
However, information about tumor lesions in imaging 
studies is not easily accessed by machines for 
automated reasoning.  The Annotation and Image 
Markup (AIM) information model recently developed 
for the cancer Biomedical Informatics Grid provides 
a method for encoding the semantic information 
related to imaging findings, enabling their storage 
and transfer. However, it is currently not possible to 
apply automated reasoning methods to image 
information encoded in AIM.  We have developed a 
methodology and a suite of tools for transforming 
AIM image annotations into OWL, and an ontology 
for reasoning with the resulting image annotations 
for tumor lesion assessment. Our methods enable 
automated inference of semantic information about 
cancer lesions in images. 

 

Introduction 

Assessment of tumor burden, the amount of cancer in 
the body, is a central task in cancer research and 
clinical practice.  Tumor burden is prognostic at 
baseline, and it can be used to assess tumor response 
to treatment through serial evaluation of changes in 
the size of lesions that make up the tumor burden.  
Radiological imaging is crucial for evaluating tumor 
burden, because it permits physicians to identify and 
track cancer lesions and to evaluate their visual 
features.  These imaging features may be descriptive, 
qualitative or quantitative.   

The cancer clinical trial community has developed 
objective criteria to quantify the change in tumor 
burden with treatment in order to evaluate the 
efficacy of novel therapeutics in patient cohorts (1-3). 
These criteria specify the types of measurement 
modalities and techniques, classification of 
measurable and non-measurable disease, calculations 
for estimating the total tumor burden and change in 
tumor burden, and classification of tumor response to 
treatment.  Application of these criteria to assess an 
individual patient’s response to treatment requires 
reasoning over the imaging features of tumor lesions. 
There are several types of specific reasoning tasks 
including classification and calculation.   For 
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example, response criteria specify that lesions must 
be classified as measurable or non-measurable 
disease.  In the RECIST criteria (1), liver lesions with 
a longest diameter greater than or equal to 10 mm at 
baseline are classified as measurable disease and 
those less than 10 mm as non-measurable disease.  
This classification task requires knowledge of the 
location of the lesion and calculation of its length. A 
subset of the measurable disease is then classified as 
target lesions.  Tumor burden is estimated by 
summing the longest dimension of the target lesions 
at baseline prior to the start of treatment and again at 
serial follow-ups after treatment has begun.  
Evaluation of the percent change in tumor burden 
from baseline yields a quantitative response rate that 
can then be further classified into response categories 
(such as complete response, partial response, stable 
disease, and progressive disease) given a set of 
thresholds.  

In the current clinical research workflow for 
evaluating tumor burden, the radiologist identifies 
cancer lesions and records detailed measurements on 
the lesions as image annotations, summarizing the 
results in a textual report. The oncologist then 
reviews and manually extracts the information about 
the location and size of tumor lesions from the report 
and image annotations, and records the information 
in a flow sheet. Information in this flow sheet is then 
used for the tumor burden and response rate 
calculations. This workflow is cumbersome and 
error-prone (4); it could be automated if the 
semantics of the imaging features in the image 
annotations were explicit and machine-accessible; 
image annotations currently provide only a graphical 
presentation of the imaging information, but they 
lack semantic meaning, so machines cannot process 
them.  

The Annotation and Image Markup (AIM) Project (5) 
of the National Cancer Institute’s cancer Biomedical 
Informatics Grid (caBIG) has recently developed an 
information model that describes the semantic 
contents in images.  AIM provides an XML schema 
that describes the anatomic structures and visual 
observations in images utilizing the RadLex 
terminology. Information about image annotations is 
recorded in AIM as XML compliant with the AIM 
schema, enabling the consistent representation, 
storage, and transfer of the semantic meaning of 
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imaging features. Tools are being developed to 
collect image annotations in AIM format  (6).   

Creating image annotations in AIM could enable the 
development of agents to automate the assessment of 
tumor burden. However, AIM does not represent 
annotations in a form that is directly suitable for 
reasoning:  it provides a transfer and storage format 
only. There are currently no semantic reasoning 
methods for making inferences about cancer lesions 
from AIM-encoded image annotations. Our goal is to 
develop knowledge-based reasoning methods for 
automated calculation and classification of tumor 
response from images.  In this paper we describe a 
methodology and suite of tools for semantic 
reasoning over AIM image annotations for the 
particular task of tumor assessment.   

Methods 

Our approach comprises three tasks:  (1) produce an 
OWL equivalent of the AIM XML-based information 
model, (2) develop a mechanism to transform 
annotations from the AIM XML documents to 
instances in the OWL model, and (3) define and 
implement reasoning tasks that use these OWL 
instances.  The components of these tasks are shown 
in Figure 1. 

 
Figure 1: Outline of process to take AIM image annotations 
from an imaging system and to perform OWL and SWRL-
based reasoning with those annotations. 
 
Transforming the AIM Information Model to OWL  
To enable ontology-based reasoning, we transformed 
the AIM information model, which is described by 
XML Schema, into an ontological representation that 
defines a semantically equivalent information model. 
This model can both represent all the concepts in the 
AIM XML, and it can be used to store OWL 
instances of AIM annotations. Domain-level 
inferences can then be defined using this 
representation. This transformation was performed by 
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creating classes and properties in the OWL 
information model that correspond to respective 
components in AIM. Our goal was to produce an 
OWL information model that is user-understandable 
and is suitable for inference.  
 
We developed a tool called XMLMaster (7) to define 
this transformation. XMLMaster was written as a 
plugin to the popular Protégé-OWL ontology 
development environment (8) and provides a 
graphical user interface that allows users to 
interactively define mappings between entities in an 
XML document and concepts in an OWL ontology. It 
can be used to define mappings between an XML 
model and an existing OWL ontology or can generate 
a new OWL ontology as the target of these mappings. 
We used this latter mode to create an OWL AIM 
information model. 
 
Transforming AIM XML Annotations to OWL 
Instances 
The second step is to define a mechanism to 
transform existing AIM XML documents to their 
equivalent annotations encoded using the OWL 
information model. We developed a tool called 
XMLMapper to perform this task.  XMLMapper uses 
the mappings defined by users of XMLMaster when 
they are specifying an XML–to-OWL transformation. 
These mappings are stored by XMLMaster in a 
mapping ontology and they contain a specification of 
how entities can be mapped from an XML document 
to instances in an OWL ontology. XMLMapper uses 
this mapping ontology to automatically transform 
XML documents to OWL ontologies. It can process 
streams of XML documents and populate an OWL 
knowledge base with the resulting transformed 
content. 
 
AIM OWL Reasoning Ontology 
Once AIM annotations are represented in OWL, we 
are in a position to develop ontology-based reasoning 
mechanisms to work with these annotations. For 
example, a reasoning task could be to classify all 
liver lesions greater than a particular size in a set of 
image annotations. This task would require structural 
information from referenced anatomical 
terminologies in addition to mass calculations on 
image data stored in annotations to generate the 
necessary inferences. A wide array of reasoning tasks 
of this type can be defined to support rich inferences 
over image annotations. As described below, the 
reasoning tasks in our particular use case obtain 
semantic information about cancer lesions in images.  
 
We used OWL and its associated rule language 
SWRL (9) to define a reasoning ontology necessary 
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to make inferences about imaging findings. SWRL 
allows users to write rules that can be expressed in 
terms of OWL concepts to provide more powerful 
deductive reasoning capabilities than OWL alone. 
Semantically, SWRL is built on the same description 
logic foundation as OWL and provides similar strong 
formal guarantees when performing inference. We 
used the Protégé-OWL (8) ontology authoring 
environment and its associated SWRLTab plugin 
(10) for developing the reasoning ontology. To 
support ontology querying we used a language that 
we have developed called SQWRL (11). SQWRL 
(Semantic Query-Enhanced Web Rule Language) is a 
SWRL-based query language that can be used to 
query OWL ontologies. SQWRL provides SQL-like 
operations to format knowledge retrieved from an 
OWL ontology. 
 
The reasoning ontology (Figure 2) and SWRL rules 
(Figure 3) were developed to enable our task of 
automated reasoning about imaging findings based 
on image annotations.  Specifically, the ontology and 
rules were developed to enable calculating the length 
of image findings and classifying the image findings 
as measurable and non-measurable. 
 
Reasoning about Cancer Lesions 
We evaluated our system in our use case related to 
reasoning about cancer lesions for estimating tumor 
burden.  For this use case, we annotated 116 images 
from 10 cancer patients who had serial imaging 
studies. Lesions were annotated in AIM format.  The 
AIM files were input into our system for processing 
to generate inferences about tumor burden.  The 
results of these inferences were evaluated for face 
validity by an oncologist. 

Results 

We successfully transformed the AIM information 
model into OWL. Figure 2 shows a portion of the 
AIM ontology, two instances of AIM image 
annotations and a subset of the properties of one of 
the image annotations.  Thus, the semantic image 
information from AIM is accessible for computer 
reasoning. 
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The image annotations we acquired for our use case 
were processed by our system to perform automated 
reasoning about the image findings.   Our SWRL 
rules executed two subtasks: 1) calculation of the 
length of each image finding from pixel coordinates, 
and 2) classification of image findings as measurable 
and non-measurable using a combination of semantic 
information about the location and type of finding, 
and its calculated length.  

For the first subtask, the length of each finding was 
calculated from the pixel (x, y) coordinates for a line, 
and information about the height and width of the 
pixels in the image using the Pythagorean theorem. 
Figure 3 shows an example of a SWRL rule and its 
output for calculating the length in this way.   

For the second subtask of classification of findings as 
being measurable or non-measurable, several new 
classes were added to the OWL Reasoner and several 
rules were invoked.   New OWL classes include 
concepts such as Long Axis, Short Axis, Pathologic 
Finding, Measurable Disease and Non-measurable 
Disease. Rules for this subtask include: 1) 
classification of the longest diameter from a pair of 
length annotations for a lesion; 2) classification of 
findings as pathologic or non-pathologic based on the 
imaging observation in the image annotation; these 
observations consist of coded terms in the AIM 
terminology, including mass, nodule, lesion, effusion, 
or children of those concepts; 3) temporal 
classification of the valid time of lesions as the 
relative time points of baseline or follow-up 
assessments based on their temporal relationship to 
the start of therapy; and 4) classification of image 
findings on baseline images as measurable if their 
observation is a mass or nodule greater than or equal 
to 10 mm in longest diameter, otherwise all other 
baseline pathologic findings classified as non-
measurable.  

The inferences from our system were reviewed by an 
oncologist who confirmed that they were correct 
based on the raw image annotation information. In 
qualitative terms, the oncologist believed our system 
will streamline the process of evaluating tumor 
burden.   
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Figure 2: A portion of the AIM ontology in the left hand panel.  Two instances of AIM image annotations are shown 
in the middle panel, and details of the properties of one instance are shown in the window in the lower right.  

 

 
Figure 3: Example SQWRL query to calculate length of line from (x,y) coordinates and pixel spacing information, 
with results shown in the panel below. The length is shown in the last column in the lower panel. An equivalent 
SWRL rule is used to assert these lengths into an OWL knowledge base for further reasoning. 
 

Discussion 

Estimating tumor burden is an important clinical and 
research task in oncology.  Currently, this is a manual 
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process that involves evaluation of multiple imaging 
features of tumor lesions including the lesion’s 
location, type (mass or effusion), and size.  This 
evaluation results in further classification of imaging 
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findings according to the rules of response criteria in 
order to estimate tumor burden.  These evaluations, 
being pre-determined and labor-intensive, are 
opportune for automation if the image information is 
machine-accessible. 

Recent standardization efforts have produced 
computer-interpretable image annotations that can be 
used in software systems to automate some of these 
reasoning tasks. The AIM information model, which 
was developed by caBIG, is one of the primary 
results of these activities. In this paper, we have 
outlined an approach to perform ontology-based 
reasoning with AIM image annotations. Our 
approach will ultimately be used to automate the task 
of estimating tumor burden.  We implemented the 
reasoning services for two of the subtasks needed to 
estimate tumor burden:  calculating the length of 
imaging findings and classifying them as measurable 
or non-measurable.  We are currently implementing 
the remaining two subtasks needed to estimate tumor 
burden: classification of measurable disease into a 
subset of target lesions, and calculation of the sum of 
longest diameters of the target lesions.  These four 
reasoning subtasks will provide an automated 
estimate of the tumor burden according to the 
RECIST (2) criteria on imaging studies at baseline 
and follow-up.  This information will enable 
oncologists to calculate and classify the response of 
patients on cancer treatment. 

A limitation of our method is that it requires 
maintenance of an ontology that corresponds to the 
AIM information model.  The AIM information 
model is not complex, so this is not a prohibitively 
expensive task.  Our method also requires 
construction and maintenance of SWRL rules. Since 
the response criteria do not change frequently, but are 
applied often, we believe creating this infrastructure 
is worthwhile. 

A benefit of our approach is that it establishes an 
automated workflow, taking AIM XML image 
annotations produced by an imaging system, 
transforming them to OWL, and reasoning with those 
annotations to generate inferences necessary for the 
domain task.  In addition, our work is extensible by 
extending our ontology or rules.  As more tools for 
creating AIM annotations are developed, our 
approach will be able to process those image 
annotations, since our infrastructure complies with 
the AIM standard.   Furthermore, as the reasoning 
tasks over image annotations continue to be 
extended, we expect our rules and ontology to more 
broadly support the task of automated assessing 
tumor response to treatment.   
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We believe our approach can be generalized to other 
types of image-based reasoning use cases beyond the 
cancer use case described through extension of the 
reasoning ontology and rules. In addition, while our 
discussion is specific to the AIM information model, 
this approach and the associated tools can be used to 
take any XML-based information model, generate its 
OWL equivalent, and then reason over it to produce 
high-level abstractions. 
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